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Purpose. Flexible parametric models describing the input process after
extravascular drug administration are needed for the assessment of
absorption rate and the use of population methods in bioavailability
and bioequivalence studies.

Methods. The oral concentration-time curve modeled as the product
of the input and disposition function in the Laplace domain was
obtained by numerical inversion methods for parameter estimation.
The utility of the inverse Gaussian input density was examined using
bioavailability data of an extended-release dosage form. Measures of
rate of absorption and the cumulative absorbed amount profile were
defined in terms of the estimated model parameters.

Results. Accurate estimation of absorption parameters was achieved
by simultaneous fitting of the extravascular and intravascular data
(describing the latter by a triexponential function). The new input
function allowed a direct estimation of both extent of absorption and
mean absorption time.

Conclusions. The findings suggest that the inverse Gaussian density
is a useful input function. Its flexibility may reduce the effect of model
misspecification in parameter estimation. All parameters can be readily
interpreted in terms of the absorption process.

KEY WORDS: pharmacokinetics; input model; bioavailability;
absorption rate; extended release.

INTRODUCTION

The oral route is the most common and convenient drug
delivery approach. However, in contrast to the well established
theoretical framework for the analysis of drug disposition
curves a comparable parametric modeling concept is not avail-
able for the evaluation of drug absorption after oral applica-
tion. First, there is a lack of flexible parametric models which
can be used to describe the complex process of drug input into
the disposition system. Second, since the input and disposition
model determine the resulting oral concentration-time profile
by a convolution operation it is often impossible to calculate
an analytical function for the oral curve. (An exception is the
simplest case characterized by monoexponential input and
disposition functions which lead to the well-known Bateman
function.) Hence data analysis is usually limited to the analysis
of curve moments by numerical integration (i.e., the area
under the curves, AUC and AUMC, as the zeroth and first
moments, respectively) instead of estimating model parame-
ters by non-linear regression. Using the moment method one
can calculate bioavailability F and mean absorption time MAT.
However, disadvantages of this type of conventional data
analysis are that the time profile of the absorption rate (or
the cumulative absorbed amount) is not available and the
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parameter MAT is obtained as difference of two residence
times which limits the reliability of its estimation. Further-
more, without analytical curve model it is impossible to pre-
dict concentration time-profiles following multiple dosing or
to apply population models for parameter estimation. In prin-
ciple this also holds for deconvolution methods with the help
of which one can obtain the time course of drug absorption
rate but no parametric model of the oral concentration-time
profile. Another drawback of this nonparametric approach is
its numerical instability.

The proper modeling of drug input is of particular impor-
tance for the evaluation of extended-release dosage forms.
Thereby, the slow input process may mask parts of the distribu-
tion process in the body. The resulting problem of model identi-
fiability is of fundamental nature and can only be overcome
by an independent assessment of drug disposition, as done in
the traditional approach of bioavailability determination (two-
period crossover design).

In this paper we introduce a parametric method which is
essentially different from the deconvolution approach or numer-
ical methods which represent special cases of the latter, like
the methods of Wagner-Nelson and Loo-Riegelmann. Based on
the application of the theory of residence time distributions
(1-3) the kinetic process after oral application is divided into
two crucial steps described by the input transit time density
and the disposition residence time density, respectively. The
inverse Gaussian density function is chosen as a flexible input
function. The convolution problem involved in modeling the
oral concentration-time profile is circumvented by formulating
the model in the Laplace domain and applying numerical inverse
Laplace transformation in fitting the model to the data. The
objective was to work out the advantages of the inverse
Gaussian density as an input function for a sustained-release
dosage form and to illustrate its utility by application to a real-
data example.

METHODS

Pharmacokinetic Model

The plasma drug concentration-time curve observed after
oral drug administration is the result of the (independent)
action of the input process (absorption) and the output process
(disposition). Thus, the pharmacokinetic system consists of
two subsystems, the input system (release and absorption
kinetics) and the disposition system (kinetics after intravenous
drug administration) characterized by the input transit time
density function f, and the disposition residence time density
fo, respectively (Figure 1). (In accordance with conventional
nomenclature we use the term “absorption” for “input”.) If
the subsystems can be arranged in series, then the random
residence times are additive under the assumption that the
processes are independent of each other [e.g., (4)]. The most
general model for monotone decreasing disposition curves is
a sum of exponentials (1),
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Fig. 1. The input (absorption) and disposition process as consecutive subsystems determining the
response of the system to extravascular drug administration [Egs. (1)-(7)].

where C,(t) denotes the concentration-time profile after an
intravenous dose D;. The corresponding density function of
disposition residence times is given by
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As in previous applications to pharmacokinetic transit time
processes (5) we use the inverse Gaussian distribution as a
model of the input time distribution. The choice of the inverse
Gaussian is made on the basis of its flexibility and appropriate
asymptotic behavior, yet containing only few parameters which
can be readily interpreted. Thus, while the underlying theory
is the first passage time distribution of a random walk process
(5,6), its role here is simply that of an empirical model. Denoting
the mean input time or mean absorption time by MAT and the
normalized variance of the distribution by CV3 the inverse
Gaussian density is given by (6)

~ MAT
fa0) = F 5 5yap e%p [

The factor F(<1) which represents bioavailability accounts
for the fact that f4(¢) [Eq. (3)] is the density of a defective
distribution F,
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Let fis) denote the Laplace transform of a function fz), i..,
fls) = [§ e "R dr. The residence time density of the complete
model f,, (Figure 1) can explicitly be written in the Laplace
domain as a product of the subsystem densities

Fok$) = Ja)fols) )

Substituting the Laplace transform of Egs. (2) and (3) into Eq.

(5) gives
N "
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and we obtain the following equation for the Laplace transform
Cpo(?) of the oral concentration-time curve C,(¢) after an oral

dose D, assuming that the intravenous reference curve [Eq.
(1)] has been measured after a dose D;,:

/2
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Numerical inverse Laplace transformation has to be applied to
convert Eq. (7) into the time domain, i.e., to calculate C,,(?).

Cumulative Absorbed Amount

Having estimated the parameters of the input model F,
MAT and CV3, one can calculate the rate of absorption versus
time curve using Eq. (3). While the rate is proportional to the
input time density function [Eq. (3)], the time course of the
fraction absorbed is given by [cf. Eq. (4)]

Fa() = I Ja(®) dr ®)
0

The cumulative inverse Gaussian distribution F,(f) can be
expressed in terms of the standard normal distribution ® (6)
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The fact that the function @ is available in parameter estimation
and computer algebra software facilitates the use of the absorp-
tion profile F;(z) [Eq. (9)] in practice.

Measures of Rate of Absorption

In order to reduce the information on the rate of absorption
contained in f,(¢) [or F,(?)] to a single measure we can calculate
I4max the time at which the input rate attains its maximum
value [mode of the inverse Gaussian (6)]

famax = MAT[ 1+ % cvi -

3wz
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The measure #4 . increases proportionally to MAT, i.e., the
ratio #,4 ./ MAT is only dependent on the relative dispersion of
absorption times CV3. The median absorption time #,5 which
is obtained by solving the equation
Fittos) = 3 an
has been proposed as an appropriate measure of absorption rate
in the case of skewed input densities (7). Alternatively, the total
absorption time can be characterized by the time #,4 at which
90% of the available dose is absorbed, which analogous to Eq.
(11) is implicitly given by Fy(z9) = 0.9.
Note that both the mean absorption time MAT and the
mean disposition residence time, MDRT = AUMC,/AUC,,, are
model independent terms which determine the mean residence

time of drug in the body after oral administration, MBRT
le.g., (2,3)]:

AUMC,,
AUC,

po

MBRT = = MAT + MDRT (12)

Simulations

The effect of the mean and the relative dispersion of
absorption time distributions (MAT and CV3) on absorption
profiles has been simulated using MAPLE V (Waterloo Maple
Software, Waterloo, Ont., Canada) and Egs. (3) and (9) (Figure
2). Note that the MAT characterizes the input rate and is a scale
parameter, whereas CV4 acts as a shape parameter of the curves.
Table I summarizes derived measures of absorption rate. The
CV3 values in Table I were chosen to illustrate the dependency
of the various absorption rate metrics on the relative dispersion
of absorption times in a range representative for slow release
formulations. As indicated in Table I for all metrics and in
Figure 2 for the time ?y¢ at which 90% of the totally available
amount is absorbed (i.e., 0.9 FD,,) the parameter CV3 has only
a minor influence on the rate of absorption normalized by MAT.
It can be concluded that after 2 MAT about 90% of the available
dose has been absorbed and that the median absorption time
is about 0.75 MAT. Note that #4 .« follows directly from Eq.
(10) while the parameters #,5 and #,¢ have been calculated by
solving Eq. (11) [after substituting Eq. (9)] using MAPLE ([for
to9 the value 1/2 in Eq. (11) has been replaced by 0.9].

Parameter Estimation

Parameter estimation by non-linear regression is applied
in con}bination with inverse Laplace transform to obtain C,(f)
from C,,(s)[Eq. (7)]. This can be performed by numerical inver-
sion methods implemented in various curve fitting software, as
for example, SCIENTIST (MicroMath Scientific Software, Salt
Lake City, USA) for DOS and MINIM (8) for Macintosh com-
puters. The method is now also available for the widely used
ADAPT II program (Schalla and Weiss, in preparation).

It is obvious from Eq. (7) that the disposition parameters
A; and \; (i = 1---n) are an integral part of the curve model.
There are two ways to overcome the inherent difficulties in
identifying the disposition system from oral concentration-time
data: First, after initially fitting the C,(#)-curve [Eq. (1)] the
estimated parameters [A; and \; (i = 1---n)] are substituted as
fixed parameters into Eq. (7) in order to estimate F, MAT and
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CV3, or second, both Egs. (1) and (7) are simultaneously fitted
to the C,(#) and C,,(¢) data. We used the latter method in an
attempt to smooth the effect of interoccasion variability of the
disposition parameters on parameter estimation.

APPLICATION

The method is applied to data of an oral extended-release
product investigated together with an intravenous reference in
abioavailability study. The product is disguised for confidential-
ity and the results are presented merely for illustration of the
method. The data from 8 subjects with 16 and 24 plasma concen-
trations collected between 5 minutes and 32 hours after oral
and intravenous administration, respectively, were analyzed.
Starting with a separate fit of the intravenous data [whereby a
triexponential decline, i.e., n = 3 in Eq. (1), was found appro-
priate], the intravenous and oral data of each subject are fitted
simultaneously using Eqgs. (1) and (7), respectively, utilizing
the numerical inverse Laplace transformation provided by SCI-
ENTIST. Thereby, the results of the initial separate fit of the
intravenous data were used as starting values. The individual
parameter estimates of the absorption model together with their
coefficients of variation are given in Table II. The goodness of
fit is indicated by values of ~* around 0.9; the reliability of
parameter estimation is also reflected by the relatively low
standard deviations of the individual estimates (which are—
except Subj. 5—for F and MAT in the order of 10% or less)
and the lack of significant correlation among the estimates of
different parameters. The disposition parameter which is of
special interest in the present context is the mean disposition
residence time MDRT since together with MAT it determines
the total residence time in the body after oral administration.
[Eq. (12)]. The MDRT values shown in Table II were calculated
from A; and \; (i = 1, 2, 3) using the standard equation [e.g.,
(3)]. Figure 3 shows two examples of the curve fits, representing
the data sets with the best (Subj. 7) and worst fit (Subj. 4)
according to total sum of squared deviations of the simultaneous
fit to the i.v. and oral data. Also shown in Figure 3 are the
corresponding input rate profiles D, f,(¢) predicted by Eq. (3).

Comparison with Other Parametric Approaches

The principle problem with fitting parametric models to
extravascular data is to apply suitable models for both the input
and the disposition process. The effects of corresponding model
misspecifications are illustrated in Figures 4 and 5 using the
data of Subj. 8. First, the consequences of an inadequate input
model are shown by the best fit obtained with a first order
absorption model (as the simplest input model)

falt) = Fhqe ™ 13)

and the “correct” disposition model [Eq. (1), n = 3]. The poor
fit in Figure 4 shows the failure of the exponential density for
an extended-release dosage form. This is not surprising since
Eq. (13) does not account for the delayed increase in input rate
[Eq. (3)] reaching its maximum after about 1.7 * 0.5 hr. The
resulting biases in F and MAT = 1/\4 (compared to the estimates
in Table II) are —7.8 and +22%, respectively. Note that an
exponential distribution [Eq. (13)] is characterized by CV3 =
1, which corresponds to a bias of +31%. Second, an appro-
priate input function [Eq. (3)] is combined with an inadequate
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Fig. 2. Time course of the absorption rate and fraction absorbed simulated as function of normalized time (T = t/MAT) using Egs. (3)
and (9), respectively (solid line CV} = 0.5, dashed line CV2 = 1.0). Note that the cumulative amount absorbed profile crosses the short-

dashed line at £, o/MAT.

disposition model. A one-compartment disposition model, for
example, is wrong a priori, since the underlying assumption
of instantaneous distribution in the whole body is only a crude
oversimplification. Here a visual inspection of the fit obtained
after substituting in Eq. (7) the triexponential by a monoexpo-
nential function does not reveal the problem since the curve fit
remains nearly unchanged (Figure 5). This structural misspecifi-

Table I. Relations Between Relative Dispersion of Absorption Times,
CV3, and Normalized Measures of Absorption Rate, fyg, £s, and £4 max
Normalized by the Mean Absorption Time, MAT

cv} too/MAT tos/IMAT Ly madl MAT
0.4 1.81 0.84 0.57
0.5 1.89 0.80 0.50
0.6 1.95 0.77 0.45
0.7 2.01 0.75 0.40
0.8 2.06 0.72 0.36
0.9 2.10 0.70 0.33
1.0 2.14 0.68 0.30
1.1 2.18 0.66 0.28
1.2 2.21 0.64 0.26

cation of the disposition model leads to biases in MAT and
CVj estimates of —2% and —48%, respectively. However, the
most striking drawback lies in the fact that in this case the
parameter F cannot be estimated directly.

DISCUSSION

The real data example suggests that the inverse Gaussian
distribution is a flexible empirical input model for an extended-
release dosage form. An important advantage of the new model
is that all parameters can be estimated directly and that they
have a definite meaning in terms of the absorption process: F
characterizes the fraction of drug absorbed, MAT the rate of
absorption and CV? the shape of the absorption profile. Based
on these parameters one can calculate temporal extents of the
input rate (as ?4 max> fo.5 and f¢) and/or predict the time courses
of the cumulative absorbed amount and of the rate of absorption.

The role of the parameters MAT, CV3 and the ratio MAT/
MDRT in determining log-concave concentration-time profiles
which are typical for sustained-release products has been dis-
cussed previously (2). The log-concavity of the oral concentra-
tion-time profiles in the real data example is in accordance with
the prediction by the MAT/MDRT criterion: A mean ratio of
MAT/MDRT = 0.98 * 0.43 as obtained from the values in
Table II is suggestive for generating log-concave curves (2).
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Table II. Estimates of F, MAT, and CV3 and Calculated Values of

tamax and MDRT (the latter was calculated from the parameters of a

triexponential disposition function). The Goodness of Fit is Indicated
by the r-squared Criterion

Subj MAT, LA .maxs MDRT,

No. F, %  min CV;i min 2 min 7

1 63.0 2545 1.015 76.1 0971 309.7 0.995
3.6) (21.6) (0.094)

2 569 186.6 0.492 942 0960 335.8 0.996
(3.8) (209) (0.097)

3 66.4  258.7 0.521 126.2 0946 323.2 0.994
(6.0) (33.6) (0.106)

4 624  396.0 0.696 159.1 0912 2838 0.991
93) (34.5) (0.065)

5 694 2174 0.754 823 0989 211.0 0.947

(23.5) (85.5) (0.570)

6 774  336.0 0.756 127.0 0962 296.5 0.995
@.7 (20.6) (0.067)

7 588 3198 1.243 803 0.973 258.1 0.995
(29) (24.1) (0.13D)

8 60.5 196.7 0.766 73.6 0973 319.8 0.999
(3.6) (17.0) (0.09)

Mean 644 270.7 0.780 1024 2922

SD 6.6 73.8 0.247 31.3 41.0

Note: Values in parenthesis represent precision of parameter estimate
(p) expressed as approximate standard deviation SD(p).

However, it should be noted that both empirical functions,

which have been proposed as minimal models for log-concave
curves, the biexponential function (Bateman function) and uni-
modal gamma curves (2, 5, 9), completely failed to describe

the data.

Based on the assumption that for slowly releasing prepara-
tions dissolution is the rate-controlling step of the input process
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one can infer that MAT differs from the in vitro dissolution
rate MDT,, o by a time scaling factor (10) while the shape
parameter CV3 may reflect the relative dispersion of the in
vitro dissolution time distribution. Thus the parameterization
in terms of MAT and CV3 may offer new possibilities in estab-
lishing quantitative correlation of in vitro dissolution profiles
with in vivo absorption data. Further, Eq. (9) appears of consid-
erable utility in the analysis of in vitro dissolution data.

Although well established in bioavailability assessment it
should be reemphasized that the knowledge of the disposition
function is a conditio sine qua non for any modeling of input
processes (2, 11, 12). If, for example, the test of new flexible
input functions is based on a wrong disposition function
(13,14)—and a monoexponential disposition function is a priori
wrong—false conclusions may be drawn from the fact that an
excellent fit is achieved. This is clear from the above considera-
tions and is also demonstrated in Figure 5 where a reasonable
fit was obtained using a monoexponential disposition curve on
the cost of erroneous estimates of the absorption parameters. On
the other hand, the potential misspecification of the absorption
model due to within-subject interoccasion variability in disposi-
tion may unavoidably lead to biased absorption parameters (12).
However, it is obvious that the effect of “interoccasion model
misspecification” (12) can be minimized by avoiding any a
priori structural misspecification of the absorption and/or dispo-
sition model.

The present model can be easily extended to a situation
where the release rate is not the rate limiting step of the absorp-
tion process (15). Assuming that the release time distribution
is inverse Gamma distributed (e.g., based on in vitro results)
and the absorption process is first order (with rate constant &)
then f4(s) in Eq. (5) has to be replaced by

. k.
Jals) = mﬁc(s) (14)

0.40 T T T
Subj. 7
0.30 + =

0.20 4

0.10 -

T ¥

T
0 500 1000 1500 2000

0.40 T T T

Input Rate (mg/min)

Subj. 4
0.30 o -

0.00 T T T

0 500 1000 1500 2000

Time (min})
Fig. 3. Plot of C,, (®) and C,, (W) versus time data for Subj. 6 (best fit) and Sub. 3 (worst
fit), together with the fitted curves and the corresponding input rate functions [Eq. (3)].
The simultaneously fitted curves for C,, are shown as solid lines, and those for C,, as
dashed lines.
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Fig. 4. Plot of the oral data (Subj. 8) and the fitted response (solid line) after structural model
misspecification of the input model: the inverse Gaussian density is substituted by a monoexponen-
tial input function. The fitted curve for the “correct” model [Eq. (7)] is shown as dashed line.

where f;g(s) is Laplace transform of the inverse Gaussian distri- The most appealing aspect of the present method is its
bution. Alternatively, the response to an oral solution C,,,(f) potential utility in the evaluation of bioavailability data. The
could serve as reference curve if Cy,(f) and/or C.n(s) can be  results also indicate that the measures TAmax> fos and foo may
described by an analytical function. prove useful for assessment of rate of absorption in bioequiva-
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Fig. 5. Plot of the oral data (Subj. 8) and the fitted response (solid line) after structural
model misspecification of the disposition model: the triexponential function is substituted by
a monoexponential disposition function. The fitted curve for the “correct” model [Eq. (7)] is
shown as dashed line.
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lence studies where the question of a suitable rate metrics is
still open fe.g., (16-18)]. It is important to note that contrary
to previous attempts in the literature such an interpretation of
MAT in terms of temporal extents of drug absorption is impossi-
ble if MAT is estimated nonparametrically on the basis of Eq.
(12) using numerical integration methods. Although the discus-
sion of deconvolution methods is out of the scope of the present
paper, it should be noted that it is still unclear whether the ill-
posed nature of the underlying inverse problem can be overcome
by more advanced methods like the maximum entropy method
(19). Furthermore, the deconvolution approach itself does not
deliver any measure characterizing the absorption process.
Although the calculated absorption rate profile could be subse-
quently fitted by Eq. (3) this would offer no advantage in
comparison to the present method which additionally provides
a parametric model of the oral concentration-time profile. In this
sense also the nonparametric (spline function based) population
method for deconvolution (20) cannot be regarded as a direct
alternative.

In view of the practical importance of bioavailability and
bioequivalence considerations it is an advantage of the present
method that the absorption parameters can be directly estimated
and readily interpreted. Furthermore, a parametric input model
allows the use of mixed effects modeling (12, 21, 22) and
the prediction of the time courses of drug concentration after
multiple oral dosing. Because of their independence of a specific
structural model, the measures F, MAT, and CV4 can, in princi-
ple, also be calculated using the method of statistical moments
and may be useful for the investigation of in vitro—in vivo
correlations of drug dissolution. It should also be noted that
the interest in the quantification of the absorption characteristics
of pharmaceutical dosage forms has been generated not only
in the evaluation of oral bioavailability and bioequivalence
studies—in academia, pharmaceutical industry or regulatory
agencies—but more recently also in the development of alterna-
tive routes of drug delivery to the body (e.g., transdermal,
intradermal, buccal). Although the absorption kinetics of the
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investigated extended-release formulation is well characterized
by inverse Gaussian density these results cannot be generalized
and further applications are necessary to examine its utility as
an empirical model of the absorption process.
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